Space reflectors could ensure bright future
“The price of solar panels has dropped quickly in recent years, increasing the pace of their adoption and paving the way for the creation of large-scale solar power farms around the world.
“One of the major limitations of solar power, of course, is that it can only be generated during daylight hours. Putting orbiting solar reflectors in place around the Earth would help to maximise the effectiveness of solar farms in the years to come. Strategically placing new solar farms in locations which receive the most additional sunlight from the reflectors could make them even more effective.”
The paper is one of the outputs from SOLSPACE, a University of Glasgow-led research project supported by €2.5m (£2.1m) in funding from the European Research Council.
Professor Colin McInnes is SOLSPACE’s principal investigator and is a co-author of the paper. He said: “The idea of orbiting solar reflectors isn’t new – in fact, it predates even the space age, as the idea of illuminating cities with light from space was first discussed in the late 1920s.
“However, space reflectors have only been demonstrated once back in the early 90s, when a 20-metre aluminium-foil reflector was released from the Russian Mir space station to reflect sunlight back to Earth.
“The SOLSPACE project is working to devise, develop and demonstrate ideas for orbital reflector technology that could work on a much more ambitious scale to deliver global clean energy services.
“Tackling the challenges of climate change requires big ideas. While this is undoubtedly a big idea, it builds on technologies that are already well-understood and computer models like ours show how they could be scaled up. In addition, the falling cost of launching payloads to space opens up entirely new possibilities for the future.”
The team’s paper, titled ‘A constellation design for orbiting solar reflectors to enhance terrestrial solar energy’, was published in Acta Astronautica. The research was supported by funding from the European Research Council under the European Union’s Horizon 2020 research and innovation programme (grant agreement No. 883730).